Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 21688, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38066072

RESUMEN

The cornerstone of structural biology is the unique relationship between protein sequence and the 3D structure at equilibrium. Although intrinsically disordered proteins (IDPs) do not fold into a specific 3D structure, breaking this paradigm, some IDPs exhibit large-scale organization, such as liquid-liquid phase separation. In such cases, the structural plasticity has the potential to form numerous self-assembled structures out of thermal equilibrium. Here, we report that high-temperature incubation time is a defining parameter for micro and nanoscale self-assembly of resilin-like IDPs. Interestingly, high-resolution scanning electron microscopy micrographs reveal that an extended incubation time leads to the formation of micron-size rods and ellipsoids that depend on the amino acid sequence. More surprisingly, a prolonged incubation time also induces amino acid composition-dependent formation of short-range nanoscale order, such as periodic lamellar nanostructures. We, therefore, suggest that regulating the period of high-temperature incubation, in the one-phase regime, can serve as a unique method of controlling the hierarchical self-assembly mechanism of structurally disordered proteins.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Nanoestructuras , Proteínas Intrínsecamente Desordenadas/química , Conformación Proteica , Temperatura , Secuencia de Aminoácidos
2.
ArXiv ; 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37693177

RESUMEN

The cornerstone of structural biology is the unique relationship between protein sequence and the 3D structure at equilibrium. Although intrinsically disordered proteins (IDPs) do not fold into a specific 3D structure, breaking this paradigm, some IDPs exhibit large-scale organization, such as liquid-liquid phase separation. In such cases, the structural plasticity has the potential to form numerous self-assembled structures out of thermal equilibrium. Here, we report that high-temperature incubation time is a defining parameter for micro and nanoscale self-assembly of resilin-like IDPs. Interestingly, high-resolution scanning electron microscopy micrographs reveal that an extended incubation time leads to the formation of micron-size rods and ellipsoids that depend on the amino acid sequence. More surprisingly, a prolonged incubation time also induces amino acid composition-dependent formation of short-range nanoscale order, such as periodic lamellar nanostructures. We can correlate the lamellar structures to \b{eta}-sheet formation and demonstrate similarities between the observed nanoscopic structural arrangement and spider silk. We, therefore, suggest that regulating the period of high-temperature incubation, in the one-phase regime, can serve as a unique method of controlling the hierarchical self-assembly mechanism of structurally disordered proteins.

3.
Res Sq ; 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37720053

RESUMEN

The cornerstone of structural biology is the unique relationship between protein sequence and the 3D structure at equilibrium. Although intrinsically disordered proteins (IDPs) do not fold into a specific 3D structure, breaking this paradigm, some IDPs exhibit large-scale organization, such as liquid-liquid phase separation. In such cases, the structural plasticity has the potential to form numerous self-assembled structures out of thermal equilibrium. Here, we report that high-temperature incubation time is a defining parameter for micro and nanoscale self-assembly of resilin-like IDPs. Interestingly, high-resolution scanning electron microscopy micrographs reveal that an extended incubation time leads to the formation of micron-size rods and ellipsoids that depend on the amino acid sequence. More surprisingly, a prolonged incubation time also induces amino acid composition-dependent formation of short-range nanoscale order, such as periodic lamellar nanostructures. We can correlate the lamellar structures to ß-sheet formation and demonstrate similarities between the observed nanoscopic structural arrangement and spider silk. We, therefore, suggest that regulating the period of high-temperature incubation, in the one-phase regime, can serve as a unique method of controlling the hierarchical self-assembly mechanism of structurally disordered proteins.

4.
Nat Chem Biol ; 19(4): 518-528, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36747054

RESUMEN

The formation of biomolecular condensates mediated by a coupling of associative and segregative phase transitions plays a critical role in controlling diverse cellular functions in nature. This has inspired the use of phase transitions to design synthetic systems. While design rules of phase transitions have been established for many synthetic intrinsically disordered proteins, most efforts have focused on investigating their phase behaviors in a test tube. Here, we present a rational engineering approach to program the formation and physical properties of synthetic condensates to achieve intended cellular functions. We demonstrate this approach through targeted plasmid sequestration and transcription regulation in bacteria and modulation of a protein circuit in mammalian cells. Our approach lays the foundation for engineering designer condensates for synthetic biology applications.


Asunto(s)
Condensados Biomoleculares , Proteínas Intrínsecamente Desordenadas , Animales , Orgánulos/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Mamíferos
5.
J Phys Chem B ; 125(25): 6740-6759, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34143622

RESUMEN

The phase separation of biomolecules has become the focus of intense research in the past decade, with a growing body of research implicating this phenomenon in essentially all biological functions, including but not limited to homeostasis, stress responses, gene regulation, cell differentiation, and disease. Excellent reviews have been published previously on the underlying physical basis of liquid-liquid phase separation (LLPS) of biological molecules (Nat. Phys. 2015, 11, 899-904) and LLPS as it occurs natively in physiology and disease (Science 2017, 357, eaaf4382; Biochemistry 2018, 57, 2479-2487; Chem. Rev. 2014, 114, 6844-6879). Here, we review how the theoretical physical basis of LLPS has been used to better understand the behavior of biomolecules that undergo LLPS in natural systems and how this understanding has also led to the development of novel synthetic systems that exhibit biomolecular phase separation, and technologies that exploit these phenomena. In part 1 of this Review, we explore the theory behind the phase separation of biomolecules and synthetic macromolecules and introduce a few notable phase-separating biomolecules. In part 2, we cover experimental and computational methods used to study phase-separating proteins and how these techniques have uncovered the mechanisms underlying phase separation in physiology and disease. Finally, in part 3, we cover the development and applications of engineered phase-separating polypeptides, ranging from control of their self-assembly to create defined supramolecular architectures to reprogramming biological processes using engineered IDPs that exhibit LLPS.


Asunto(s)
Regulación de la Expresión Génica , Proteínas
6.
Angew Chem Int Ed Engl ; 59(38): 16616-16624, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32537907

RESUMEN

The outstanding adhesive performance of mussel byssal threads has inspired materials scientists over the past few decades. Exploiting the amino-catechol synergy, polymeric pressure-sensitive adhesives (PSAs) have now been synthesized by copolymerizing traditional PSA monomers, butyl acrylate and acrylic acid, with mussel-inspired lysine- and aromatic-rich monomers. The consequences of decoupling amino and catechol moieties from each other were compared (that is, incorporated as separate monomers) against a monomer architecture in which the catechol and amine were coupled together in a fixed orientation in the monomer side chain. Adhesion assays were used to probe performance at the molecular, microscopic, and macroscopic levels by a combination of AFM-assisted force spectroscopy, peel and static shear adhesion. Coupling of catechols and amines in the same monomer side chain produced optimal cooperative effects in improving the macroscopic adhesion performance.


Asunto(s)
Adhesivos/química , Aminas/química , Catecoles/química , Estructura Molecular , Presión
7.
ACS Appl Mater Interfaces ; 11(31): 28296-28306, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31310493

RESUMEN

The byssus-mediated adhesion of marine mussels is a widely mimicked system for robust adhesion in both dry and wet conditions. Mussel holdfasts are fabricated from proteins that contain a significant amount of the unique catecholic amino acid dihydroxyphenylalanine, which plays a key role in enhancing interfacial adhesion to organic and inorganic marine surfaces and contributes to cohesive strength of the holdfast. In this work, pressure-sensitive adhesives (PSAs) were synthesized by copolymerization of dopamine methacrylamide (DMA) with common PSA monomers, butyl acrylate and acrylic acid, with careful attention paid to the effects of catechol on adhesive and cohesive properties. A combination of microscopic and macroscopic adhesion assays was used to study the effect of catechol on adhesion performance of acrylic PSAs. Addition of only 5% DMA to a conventional PSA copolymer containing butyl acrylate and acrylic acid resulted in 6-fold and 2.5-fold increases in work required to separate the PSA from silica and polystyrene, respectively, and a large increase in 180° peel adhesion against stainless steel after 24 h storage in both ambient and underwater conditions. Moreover, the holding power of the catechol PSAs on both steel and high-density polyethylene under shear load continuously increased as a function of catechol concentration, up to a maximum of 10% DMA. We also observed stark increases in shear and peel adhesion for the catecholic adhesives over PSAs with noncatecholic aromatic motifs, further underlining the benefits of catechols in PSAs. Overall, catechol PSAs perform extremely well on polar and metallic surfaces. The advantage of incorporating catechols in PSA formulations, however, is less straightforward for peel adhesion in nonpolar, organic substrates and tackiness of the PSAs.


Asunto(s)
Adhesivos/química , Adhesivos/síntesis química , Materiales Biomiméticos/química , Materiales Biomiméticos/síntesis química , Dopamina/química , Metacrilatos/química , Polimerizacion , Presión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...